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ANALYSIS OF LAUNCH WINDOWS FROM CIRCULAR ORBITS 

FOR RFPRESEPJTATIVE MARS MISSIONS~ 

By Larry A. Manning, Byron L. Swenson, 
and Je r ry  M. Deerwester 

NASA Headquarters 
Moffett F ie ld ,  California 94035 

SUMMARY 

Round-trip missions t o  Mars have been investigated t o  define representa- 
t i v e  launch windows and associated AV requirements. The 1982 inbound and 
the 1986 outbound Venus swingby missions were selected f o r  analysis  and serve 
t o  demonstrate t he  influence of t h e  charac te r i s t ics  of the  he l iocent r ic  tra- 
j ec to r i e s  on t h e  launch-window veloci ty  requirement. The analysis  inves t i -  
gated the  use of optimum one- and two-impulse t r ans fe r s ,  plus ,  a r e s t r i c t e d  
three-impulse t r ans fe r  employing an intermediate e l l i p t i c  o r b i t  t o  t r ans fe r  
from a c i r c u l a r  parking o r b i t  t o  the  departure hyperbolic asymptote. Inser-  
t i o n  at planet  arrival was  in to  an o rb i t  coplanar with the  arrival asymptote 
and any required plane change was performed during the  planet departure phase. 
The study indicates  t h a t ,  with a three-impulse t r ans fe r ,  t he  AV' penalty t o  
provide a launch window of 20 days a t  Earth or 60 days at Mars i s  no more than 
5 t o  10 percent above the  minimum coplanar requirement. 
mission analyses of t he  coplanar requirements would not r e s u l t  i n  large 
e r ro r s  if  three-impulse t ransfers  are acceptable. However, t he  r e s u l t s  a lso 
show t h a t  t he  use of  coplanar departure velocity requirements i s  not a good 
approximation f o r  these launch windows with one- or two-impulse t ransfers .  

Therefore, use i n  
AV 

Once the  outbound leg  and planet o r b i t  have been f ixed,  t h e  nominal 
re turn  l eg  can be reexamined as a function of  staytime t o  minimize the  t o t a l  
departure (plane change plus hel iocentr ic)  velocity requirement. 
d i r ec t  r e tu rn  leg,  su f f i c i en t  var ia t ion  i n  the plane-change angle can be 
achieved by varying the  leg  duration t o  a l l o w  t h e  launch window t o  be 
increased f o r  one-impulse t ransfers .  No s ignif icant  e f f ec t  occurs f o r  the 
three-impulse t r ans fe r s  due t o  t h e i r  already low AV penal t ies .  I n  the case 
of  t he  swingby re turn  leg,  the swingby requirement so severely r e s t r i c t s  t he  
departure vector  t h a t  no s igni f icant  var ia t ion i n  the  launch window occurs. 

For the  

The e f f e c t  of small e r rors  i n  the  second harmonic of the  grav i ta t iona l  
f i e l d  of t h e  planet  and i n  the o r b i t  radius are shown t o  require  a continual 
updating of t h e  o r b i t a l  parameters while i n  o r b i t  at  the planet. I f  t h i s  i s  
not done, t h e  predicted o r b i t  locat ion can 'be i n  error by as much as 5' i n  
longitude af ter  a 50 day staytime. 

authors and e n t i t l e d  "Launch Window Analysis f o r  Round Trip Mars Missions, 
presented at  the  Canaveral Council of  Technical Societ ies '  F i f t h  Space 
Congress, Cocoa Beach, Florida,  March 11-14, 1968. 

'The mater ia l  i n  t h i s  report  was summarized i n  a paper by the same 



INTRODUCTION 

Preliminary analysis of interplanetary missions is  generally performed 
with the assumption t h a t  launch window penal t ies  can be closely approximated 
by t h e  change i n  the  coplanar departure ve loc i ty  requirements throughout t h e  
window. 
ture from e i t h e r  Earth or t he  planet .  
t i o n  ex is t s  during the  launch period of i n t e r e s t .  
hyperbolic asymptote i s  time dependent and the  o r b i t  plane regresses as a 
result of planetary oblateness, they w i l l  generally be e s sen t i a l ly  coplanar I 

for only s h o r t  periods.  The rest of t h e  t i m e ,  an angle w i l l  exist between t h e  
asymptote direct ion and the  o rb i t  plane. 
accomplish t h e  required turning maneuver can be of such magnitude as t o  render 
t h e  coplanar assumption inval id .  

Most missions under consideration use a parking o r b i t  p r io r  t o  depar- 
L This means t h a t  a unique o r b i t  incl ina-  

Since the  departure 

The ve loc i ty  increment necessary t o  

This report  compares three  d i f f e ren t  techniques f o r  performing t h e  
turning maneuver from c i r cu la r  o r b i t  during launch windows a t  both Earth and 
Mars. These techniques consis t  of (1) an approximate solut ion f o r  optimum 
one-impdse t r ans fe r ,  ( 2 )  an i t e r a t i v e  so lu t ion  f o r  optimum two-impulse t r ans -  
fer, and (3)  a r e s t r i c t ed  three-impulse t r a n s f e r  employing an intermediate 
e l l i p t i c  o r b i t  from which the  required plane change i s  made. This r e s t r i c t e d  
three-impulse t r ans fe r  lends i t s e l f  t o  a r a the r  simple computer analysis  and 
is  not s ign i f icant ly  more expensive i n  terms of AV than would be an optimum 
three-impulse t r ans fe r  where t h e  required plane change is divided among the  
th ree  increments. A l a rge r  number of impulses can a l so  be used; however, t he  
expected reduction i n  the propulsive ve loc i ty  requirement below t h e  three-  
impulse t r a n s f e r  does not appear t o  warrant t h e  added operational complexity. 

To be meaningful, i n  terms of spacecraf t  synthesis ,  t he  departure 
analysis has tc be mission or iented.  T!ms, t he  impulsive techniques were 
applied t o  two spec i f ic  Mars stopover missions. These two missions encompass 
t h e  f o u r  t r a j ec to ry  legs of i n t e r e s t :  d i r e c t  inbound and outbound and Venus 
swingby inbound and outbound. Therefore, while t he  numbers a re  not d i r e c t l y  
applicable t o  other  Mars missions, t h e  conclusions can be generalized t o  other 
round-trip t r a j ec to ry  modes. 

The report  is divided in to  three  major sect ions.  In  t h e  first sec t ion ,  
t h e  orb i t  t r ans fe r  techniques which were used are discussed, and parametric 
data are provided i n  support of t he  assumptions and approximations made i n  t h e  
analysis.  In  t h e  second sect ion t h e  c r i t e r i a  f o r  t h e  mission se lec t ion  are 
discussed and t h e  charac te r i s t ics  of t h e  1982 inbound Venus swingby and of t he  
1986 outbound Venus swingby which were chosen as representative Mars missions 
are defined. The coupling of t h e  missions with t h e  t r a n s f e r  techniques is  
contained i n  the  t h i r d  sect ion where contour maps of constant ve loc i ty  incre- 
ments as functions of inc l ina t ion  and staytime i n  o r b i t  are presented and 
discussed. 
t ra jec tory  reselect ion and er rors  i n  planet  cha rac t e r i s t i c s  is a l so  provided 
i n  the t h i r d  sect ion.  

An assessment of t h e  s e n s i t i v i t y  of t he  launch window t o  

2 



METHOD OF ANALYSIS 

Orbit Geometry 

I n  considering t h e  launch window problem f o r  a given mission, it is first 
necessary t o  es tab l i sh  the  var ia t ion  with time of t he  r e l a t ive  posi t ions of 

planetary launch windows, it w a s  assumed tha t  t h e  c i r cu la r  parking o r b i t  a t  
planet a r r i v a l  w a s  coplanar with the  a r r i v a l  asymptote. The resu l t ing  o r b i t  

system with its Z axis a t  t h e  north pole and its X axis at t h e  planet  
vernal  equinox w a s  chosen as indicated.  The a r r i v a l  asymptote or hyperbolic 
excess ve loc i ty  vector  is defined conventionally as a planet-centered vector  
with r igh t  ascension, p, and declination, 6. The o r b i t  elements of in te res t ,  
t h a t  is, t h e  incl inat ion,  i, and longitude of t h e  ascending node, Q, are 
re la ted  by 

@ t h e  o r b i t  plane and t h e  hyperbolic escape asymptote. For the  analysis  of 

'elements are shown i n  f igu re  1. A planet-centered right-hand coordinate 

tan  6 s in (p  - Q) = - t an  i 

f o r  a l l  i 2 6. 

It can be seen t h a t  f o r  each incl inat ion there  are two o r b i t  planes 
coplanar w i t h  t h e  a r r i v a l  asymptote. These two o rb i t s  can be distinguished 
by t h e  r e l a t i v e  posi t ions of t he  ac tua l  spacecraft  approach vector  a t  t h e  
time of t h e  f i n a l  midcourse maneuver, and the planet-centered excess ve loc i ty  
vector.  
moves toward t h e  north pole of t h e  planet and t h e  magnitude of 
grea te r  than 90'. 
t i on .  
vector  ( i . e . ,  toward the  south pole) and the  magnitude of 
than 90'. 
inser t ion .  

If t h e  spacecraft  approaches above the excess ve loc i ty  vector,  it 
p - R is 

This or ien ta t ion  w i l l  be referred t o  as a northern inser -  
In  t h e  other  case, t he  spacecraft  approaches below t h e  excess ve loc i ty  

Figure 1 illustrates t h i s  configuration which is  ca l led  a southern 
p - Cl. is  less 

The s i t u a t i o n  a t  some t i m e  after a r r iva l  i s  i l l u s t r a t e d  by figure 2. 
f i r s t -o rde r  secular  perturbation due t o  planet oblateness causes t h e  o r b i t  
plane t o  regress about t h e  planet i n  t h e  manner shown. 
orb i t s ,  t h e  inc l ina t ion  of t he  o r b i t  remains unchanged and t h e  longitude of 
t h e  ascending node changes by AQ (see ref. 1) where 

The 

That is, f o r  c i r c u l a r  

and 

AR = -3755 2 r   COS i ) N  

3 



A t  t h a t  time, the  o rb i t  plane makes an angle with the  departure asymptote of 
&. 
maneuver. 

It is  t h i s  angle t h a t  m u s t  be compensated f o r  during the  departure 

v 
The o r b i t  geometry a t  Earth w a s  analyzed i n  a similar manner except t h a t  

t h e  i n i t i a l  o r b i t  (corresponding t o  t h e  o r b i t  a t  arrvial f o r  t he  planetary 
case) was chosen so as t o  be, through regression, coplanar with t h e  departure 
asymptote at t h e  nominal departure time; t h a t  is, zero plane change w a s  chosen" 
f o r  nominal departure.  A s  with the  planetary orb i t s ,  two o r b i t a l  planes exist 
which s a t i s f y  t h i s  cons t ra in t .  These planes are distinguished by t h e  r e l a t ive  
location of t h e  ac tua l  spacecraft  departure and t h e  departure excess ve loc i ty  
vector a t  t he  nominal departure da te .  If t h e  ac tua l  departure is above t h e  
excess vector, then the  spacecraft  departure i s  toward the  north pole and t h e  
magnitude of p - R is  grea te r  than 90'. This departure is  ca l led  a northern 
inject ion.  The other  plane has the  spacecraf t  departing below o r  south of t he  
excess veloci ty  vector .  This departure has a p - R l e s s  than 90' and is 
ca l led  a southern in j ec t  ion.  

h p u l s  ive Arialys i s  

The assumption w a s  made f o r  t h i s  analysis  t h a t  t h e  ve loc i ty  increments 
are achieved impulsively. The first e f f e c t  of t h i s  assumption is the  neglect 
of gravity losses .  Gravity losses,  however, t yp ica l ly  are r e l a t ive ly  s m a l l  
f o r  these missions and can be approximated or even neglected, as done here, 
without s ign i f i can t  e r ro r  

The impulsive assumption g rea t ly  s implif ies  the analysis  arid i s  
ju s t i f i ab le  f o r  t he  analysis  of near coplanar a r r i v a l s  in to  and departures 
from c i rcu lar  o r b i t s .  For highly e l l i p t i c a l  o rb i t s  it i s  less apparent t h a t  
f o r  the  same ve loc i ty  increment t he  or ien ta t ion  between t h e  parking o r b i t  and 
the  escape hyperbola ( i . e . ,  planet departure)  is preserved whether t h e  veloc- 
i t y  is  added impulsively or through a f i n i t e  th rus t ing  time. This or ien ta t ion  
is preserved, however, as is  shown by t h e  example i n  f igu re  3 where t h e  veloc- 
i t y  increment required t o  escape t o  a hyperbolic excess speed of 6 .0  km/sec 
from Mars is shown as a function of t h e  turning angle, t h a t  is, t h e  angle 
between t h e  l i n e  of apsides and the  departure asymptote. This example is f o r  
a departure from an o r b i t  with an eccent r ic i ty  of 0.9 and 1000 Inn per iapsis  
a l t i t ude .  The i n i t i a l  thrust-to-weight r a t i o  f o r  t h e  f i n i t e  th rus t ing  maneu- 
ver  was optimized as a function of t h e  true anomaly a t  t h e  start  of th rus t ing  
and, f o r  t h e  propulsion system assumed, var ied from about 0.03 near apoapsis 
t o  0 .4  near per iapsis  . It i s  readi ly  apparent t h a t  i n  t h e  region of i n t e r e s t  
(i .e. ,  near-periapsis departures where t h e  resu l t ing  turning angles a re  
between about TO0 and 130°) there  is no s ign i f i can t  difference between t h e  
impulsive and the  f i n i t e  th rus t ing  time ve loc i ty  increments. 

The primary difference between the  results f o r  t he  impulsive t h r u s t  and 
f o r  the f i n i t e  th rus t ing  t i m e  is i n  the  pos i t ion  on t h e  parking o r b i t  a t  which 

IC 



t h e  ve loc i ty  is added. For f i n i t e  thrust ing times, t h e  start  of t h e  th rus t  
occurs p r i o r  t o  ( i . e . ,  leads) the  t r u e  anomaly f o r  impulsive ve loc i ty  addi t ion.  
That is, t o  obtain the same excess speed and d i rec t ion  as i n  t h e  impulsive 
case, t he  f i n i t e  th rus t ing  m u s t  be approximately centered about t he  posi t ion 
of t he  impulsive ve loc i ty  addition. 
Here t h e  ve loc i ty  increment t o  escape t o  an excess speed of 6.0 km/sec from 
Mars is  shown as a function of t rue  anomaly around an o r b i t  with an eccen- 

The true anomaly shown 
for t h e  f i n i t e  th rus t ing  is  t h a t  a t  t h e  start  of th rus t ing .  It can be seen 
t h a t  f o r  equal ve loc i ty  increments (and hence approximately equal turning 
angles), the s tar t  of f i n i t e  th rus t ing  m u s t  lead the  posi t ion f o r  impulsive 
ve loc i ty  addi t ion by approximately 5' t o  15' i n  t r u e  anomaly f o r  a l l  true 
anomalies except near apoapsis . Near apoapsis, t he  associated slow ro ta t ion  
and f i n i t e  t h r u s t  r e su l t  i n  a near zero lead-angle requirement. I n  swnmary, 
t h e  assumption of impulsive ve loc i ty  addition is a t t r a c t i v e  due t o  the  
s implif icat ion it permits and appears j u s t i f i ed  due t o  t h e  small resu l tan t  
e r ro r s .  

Typical lead angles a re  shown i n  f igure  4. 

fl' t r i c i t y  of 0.9 and a per iapsis  a l t i t ude  of 1000 Inn. 

Plane-Change Modes 

A comparison of th ree  methods of t ransfer  from a c i r c u l a r  parking o r b i t  
t o  a hyperbolic asymptote i s  provided i n  t h i s  paper. These methods are 
optimal one- and two-impulse d i r e c t  t ransfers  and a r e s t r i c t ed  three-impulse 
t r a n s f e r  t h a t  uses an intermediate e l l i p t i c a l  o r b i t .  The techniques are 
described i n  t h i s ,  sect ion.  

The ve loc i ty  increment calculations require knowledge of t h e  minimum 
angle, I,, between t h e  o r b i t  plane and the departure asymptote. This angle 
w a s  computed from equation (1) of reference 2, which is reproduced here:  

s i n  I, = cos i [ s i n  \ - t an  6, cos % cos(pa - pb - u t ) ]  

1/ 2 
+_(sin2 i - sin2 €ja) sec €ja cos % sin(pa - Pb - u t )  

where 

P r i g h t  ascension 

i inc l ina t ion  of parking o r b i t  plane 

6 dec l ina t ion  

w regression rate 

t time from reference date 

( )a reference vector 

( )b a c t u a l  departure vector  

5 



The reference vector used i s  the  nominal departure vector  f o r  Earth launch- 
window analysis and the  a r r i v a l  vector  f o r  Mars launch window analys is .  

One-impulse t ransfers .  - The single-impulse t r ans fe r  problem is one of 
solving f o r  t he  minimum veloc i ty  increment (AV) t o  achieve t h e  desired depar- 
t u re  hyperbolic asymptote from a specif ied o r b i t .  The exact so lu t ion  of t h e  
minimum impulse resu l t s  i n  an expression tha t  does not permit a closed form 
so lu t ion .  However, reference 3 contains an approximate so lu t ion  i n  terms of 
t he  angle and of t he  magnitude of t h e  hyperbolic ve loc i ty  vec tor  (V,). 
For completeness, t he  solut ion is reproduced here : 

I, 

where 

K = Vo,/Vc 

A = s i n  i& 

and Vc i s  the  c i r cu la r  ve loc i ty  a t  o r b i t a l  a l t i t u d e  

This so lu t ion  w a s  developed f o r  analyzing departures from a lunar  o r b i t ;  
however, it is general and therefore  applicable t o  planetary ana lys i s .  Dimen- 
s ionless  parametric resu l t s  over the  ve loc i ty  range of i n t e r e s t  a r e  shown i n  
f igure  5 .  

Two-impulse t r ans fe r s .  - The two-impulse t r ans fe r  technique considered i n  
t h i s  study u t i l i z e d  one impulse a t  departure from t h e  c i r c u l a r  parking o r b i t  
and t h e  second impulse a t  an " i r j i n i t e "  distance from t he  planet ,  t h a t  IS, a t  
the  sphere of influence. The so lu t ion  used w a s  developed by Gunther i n  r e fe r -  
ence 3 and employs an optimal d i s t r ibu t ion  of ve loc i ty  change and angle change 
between the two impulses. 
developed f o r  lunar appl icat ion,  but is generally applicable t o  planetary 
operation. 

A s  with t h e  single-impulse case,  t h e  so lu t ion  w a s  

The t o t a l  ve loc i ty  impulse is  computed by the  sum of t he  following 
equations : 

AV,/V, - = (8 - K 1 sin2 Y ) ~ ' z  - K~ cos Y 

6 



where 

K, = 

y =  

w =  
P =  
* 

- i =  
90 

I,= 

J, - 
- 

Since 

& t e r  f i rs t  impulse I/ / \ -+ 
or ien ta t ion  of second impulse ( see  sketch) /. 
(K2 + 2)1’2 cos p + K 

90’ minus f l ight-path angle of escape hyperbola a t  o r b i t  in te rsec t ion  

minimum angle between parking o rb i t  plane and 

j, + i, t o t a l  out-of-plane angle 

K, 

t he  parameters W ,  Y, and i, are functions of K, f o r  optimum 
t r ans fe r ,  these equations are solved by i t e r a t ion  upon Rl and give t h e  
dimensionless parametric results shown i n  f igure 6 .  The f igu re  a l so  indicates  
with a dashed l i n e  t h e  boundary beyond which t h e  s ing le  impulse solut ion is 
optimum . 

Three-impulse technique.- The three-impulse mode considered i n  t h i s  study 
u t i l i z e s  an in-plane tangent ia l  impulse t o  in se r t  t he  spacecraft  f r o m  t h e  
c i r c u l a r  parking o r b i t  i n to  an intermediate highly e l l i p t i c a l  o rb i t  followed 
by a plane change at apoapsis t o  ro t a t e  t he  orb i t  plane s o  t h a t  it is coplanar 
with t h e  departure asymptote. The motive behind placing the  spacecraft  i n t o  
a highly e l l i p t i c a l  o r b i t  is t o  reduce t h e  plane-change ve loc i ty  requirement 
by accomplishing t h e  plane-change a t  apoapsis where t h e  ve loc i ty  is t h e  low- 
es t .  
posi t ion on t h e  intermediate e l l i p s e  s o  as t o  place the  spacecraft  on t h e  
required escape hyperbola. 
parking o r b i t  is  var ied parametrically and from these r e su l t s  the  optimum 
posi t ion is determined by a numerical search. 
t i o n  minimizes the plane-change maneuver without an inordinate penalty f o r  an 
off-per iapsis  departure from the  intermediate e l l i p s e .  A complete discussion 
of t h i s  three-impulse technique is  given i n  appendix A .  

The t h i r d  impulse is  then provided tangent ia l ly  a t  t h e  appropriate 

The posi t ion of the f irst  impulse on t h e  circular 

In  general ,  t h e  optimum posi-  

A br ie f  study w a s  m a d e  of off-apoapsis plane-change maneuvers on t h e  
intermediate o r b i t  with the motive of ro ta t ing  the l i n e  of apsides i n  order  
t o  reduce off-per iapsis  departure penal t ies .  It w a s  found t h a t  f o r  highly 
eccentr ic  o r b i t s  very l i t t l e  was t o  be gained, and t h a t  t h e  optimum plane- 
change posi t ion w a s  very near apoapsis. 
of t h e  low off-per iapsis  departure penal t ies  f o r  highly e l l i p t i c  o r b i t s .  

This result is primarily a r e f l ec t ion  

The e f f ec t  of t h e  eccent r ic i ty  of t h e  intermediate e l l i p s e  upon t h e  t o t a l  
departure ve loc i ty  requirements i s  shown i n  figures 7 (a )  and (b)  f o r  Earth 
and Mars, respect ively.  These da ta  are f o r  a typ ica l  hyperbolic excess speed 
of 6 km/sec and f o r  an o r b i t  a l t i t u d e  of 1000 km. Curves are shown f o r  va r i -  
ous angles, L, between the  o r b i t  plane and the departure asymptote. 
be seen, espec ia l ly  f o r  la rge  out-of-plane angles, t h a t  high intermediate 
o r b i t  eccen t r i c i t i e s  are very a t t r a c t i v e .  

It  can 
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Parametric data  f o r  t h e  three-impulse departure requirements as a 
function of hyperbolic excess speed a r e  shown i n  figures 8(a) and ( b )  f o r  
Earth and Mars, respectively.  
and an intermediate o r b i t  with an eccent r ic i ty  of 0.9. 
plane angles, &, are shown. 

These da ta  a re  f o r  an o r b i t  a l t i t u d e  of 1000 km 
Again, various out-of- 

MISSION SELECTION CRITERIA \ 

Data t o  a id  i n  se lec t ing  reasonable mission p ro f i l e s  are contained i n  .I 

reference 4 which presents mission cha rac t e r i s t i c s  f o r  both d i r e c t  and Venus 
swingby stopover missions t o  Mars f o r  each Earth-Mars opposition period from 
1980 t o  t he  year 2000. 
exception of t he  1984 and 1997 oppositions the  swingby mode is more a t t r a c t i v e  
than the d i r e c t  mode. 
i n  some cases affording reductions of 30 percent.  Earth entry speeds are a l so  
consis tent ly  lower, affording reductions of up t o  50 percent.  These benefi ts  
a r e  realized f o r  mission durations of about 500 days, which represents an 
increase of about 20 percent over t he  durations f o r  d i r e c t  missions (based on 
30-day stopovers).  These mission durations were obtained by minimizing t h e  
product of propulsive ve loc i ty  requirements and mission duration. 
"nominal" missions from reference 4 have mission durations about 25 percent 
shor te r  than minimum energy missions a t  the  expense of less than a 10-percent 
increase i n  t o t a l  propulsive ve loc i ty  requirements. 
l a t e r ,  such a mission se lec t ion  procedure contributes t o  a low s e n s i t i v i t y  of 
t h e  mission parameters t o  launch delays.  For the  above reasons and t o  encom- 
pass typ ica l  inbound and outbound swingbys, t he  launch-window analyses were 
conducted f o r  t he  "nominal" mission f rom reference 4 f o r  t he  1982 inbound 
swingby and f o r  the  1986 outbound swingby. 

The resu l t s  of t h a t  study indicate  t h a t  with the  

Propulsive ve loc i ty  requirements a re  consis tent ly  l o w e r ,  

These 

A s  w i l l  be demonstrated 

Since t h e  in t en t  of t h i s  paper i s  t o  assess t h e  influence of launch 
delays on mission cha rac t e r i s t i c s ,  one approach t o  t h e  se lec t ion  of t h e  round- 
t r i p  t r a j ec to r i e s  could have been t h e  spec i f ica t ion  of a nominal stopover 
t i m e .  
o r b i t  charac te r i s t ics  a t  Mars t o  ensure t h a t  some other  c r i t e r i o n  be met, f o r  
example, t h a t  t he  nominal departure from Mars be coplanar, o r  t h a t  t h e  plane- 
change ve loc i ty  penalty be minimized throughout some a rb i t r a ry  staytime, e t c .  
The approach taken here is  t o  vary both stopover t i m e  and o r b i t  inc l ina t ion  
parametrically and t o  divorce t h e  se lec t ion  of t he  outbound leg  from the  
select ion o f  t h e  inbound l eg .  

This would have necessitated a fu r the r  spec i f ica t ion  on t h e  parking 

Representative Earth departure and Mars a r r ive1  conditions m u s t  neverthe- 
l e s s  be specif ied.  For both mission years considered, t h e  outbov-nd l eg  chosen 
i s  tha t  f o r  the  nominal mission employing a 30-day stopover. The Mars depar- 
ture date was then var ied t o  r e f l ec t  departure delays.  While t h i s  may seem 
r e s t r i c t i v e ,  it is i n  f a c t  qu i t e  reasonable. For outbound swingbys, regard- 
less of mission duration o r  stopover time, var ia t ions  of no more than about 
10 days a r i s e  i n  e i t h e r  t he  optimum Earth departure o r  Mars a r r i v a l  da tes .  
For inbound swingbys, t he  va r i a t ion  i n  Mars a r r i v a l  date  can be on t h e  o rde r  
of 50 days. However, while t he  use of t h e  optimum a r r i v a l  da te  would reduce 
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the Mars coplanar departure ve loc i ty  requirements, it w i l l  not  s ign i f icant ly  
influence t h e  plane-change requirements for the various stopover times. 

The s a l i e n t  features of t h e  outbound legs f o r  t he  two missions are 
contained i n  table I. It i s  emphasized t h a t  regardless of stopover time the  
outbound leg  cha rac t e r i s t i c s  remain fixed as shown. 

In  order t o  reduce t h e  s e n s i t i v i t y  of Earth departure ve loc i ty  t o  delays 
4n  Earth departure da te ,  one could, of course, s e l e c t  t h e  outbound leg f o r  any 
departure date  such t h a t  t h e  noncoplanar veloci ty  penalty would be minimized. 
However, t h i s  procedure would permit t he  Mars a r r i v a l  ve loc i ty  t o  be uncon- 
@trained.  Consequently, t he  ve loc i ty  savings a t  Earth could be more than o f f -  
set  a t  Mars. 
propellant tank volumes and acceptable mass i n  Earth o r b i t  values are a t  hand. 

I n  r e a l i t y ,  t he  proper outbound legs  can only be chosen when 

This paper is not concerned with system charac te r i s t ics ,  ye t  recognizing 
t h a t  Mars a r r i v a l  ve loc i t i e s  should not be allowed t o  increase indef in i te ly ,  
t he  outbound t r a j ec to ry  legs are selected s o  t ha t  t he  sums of t h e  Earth depar- 
ture and Mars a r r i v a l  ve loc i ty  increments a re  equal t o  t h e  nominal values 
insofar  as possible .  
t he  t r a j e c t o r i e s  are then selected on the  basis of minimizing t h e  ve loc i ty  
sum. 
the  nominal missions were defined. If t he  nominal missions had been selected 
on the  basis of minimum energy, then a l l  delays could cause t h e  ve loc i ty  
requirements t o  increase. 

- 
When t h i s  constant value can no longer be maintained, 

Note t h a t  t h i s  procedure is possible by v i r t u e  of t h e  manner by which 

Figures g(a) and ( b )  i l lust rate  t h e  var ia t ion  of ce r t a in  outbound leg  
parameters for t h e  1982 and 1986 missions, respectively.  
it is possible t o  maintain a constant outbound l eg  ve loc i ty  requirement (i  .e. , 
sum of Earth departure and Mars a r r i v a l )  f o r  a period of 20 days a t  Earth 
departure.  
a t  Mars varies by 35 days. 
departure and Mars a r r i v a l  ve loc i t i e s  occurs and the  Mars a r r i v a l  date  var ies  
by 15 days. 

Notice t h a t  i n  1982 

Notice t h a t  throughout t he  40-day window shown, t h e  arrival da te  
In  1986, no var ia t ion i n  the  sum of Earth 

The technique of maintaining constant veloci ty  is  a l so  applied success- 
f u l l y  t o  t h e  de f in i t i on  of t h e  inbound legs f o r  launch delays a t  Mars as 
shown i n  f igu res  l O ( a )  and (b ) .  
i t y  i s  considered. 
of course, but as can be seen they remain quite low. 
departure ve loc i ty  can be maintained f o r  a l l  stopover t i m e s  less than about 
50 days. 
f o r  stopover t i m e  up t o  100 days a t  Mars i s  o n l y  70 days. 
ve loc i ty  can be maintained f o r  stopover times up t o  80 days. only modest 
increases i n  inbound leg duration take place for staytimes up t o  about 50 
days. To maintain e i t h e r  a constant Mars departure ve loc i ty  o r  minimum Mars 
departure ve loc i ty  f o r  staytimes i n  excess 01" about 60 days, it is necessary 
f o r  t h e  inbound leg  he l iocent r ic  t r ans fe r  angle t o  exceed 1 8 0 ~ .  
inbound l e g  durat ion m u s t  increase accordingly. 

In  t h i s  case, only t h e  Mars departure veloc- 
Constraints could a l so  be imposed on Earth entry speeds, 

In  1982, a constant Mars 

It can be observed a l s o  t h a t  t he  var ia t ion  i n  inbound l eg  duration 
In 1986, a constant 

Thus, t he  

9 



NUMERICAL ANfiYSIS 

In order t o  provide an assessment of t he  performance of one-, two-,  and 
three-impulse t r ans fe r s  f o r  representative Mars missions, t he  techniques 
described f o r  t r ans fe r  analysis w e r e  applied t o  t he  two selected missions. 
This section presents (1) t h e  results of analyses of t h e  nominal Earth launch 
window and nominal Mars launch window, ( 2 )  t h e  e f f ec t  of redefining the  depaq- 
t u r e  leg a t  both Earth and Mars, and (3)  the  s e n s i t i v i t y  of t he  Mars launch- 
window ve loc i ty  requirements t o  o r b i t  radius and planet oblateness 
uncertaint ies .  

The format selected f o r  presentation of t h e  nominal launch-window da ta  
is a contour map, showing l i n e s  of constant propulsive ve loc i ty  requirement 
on an o r b i t  inc l ina t ion  versus departure date  p lo t .  Thus, f o r  a given o r b i t ,  
t h e  launch window f o r  a given propulsive capabi l i ty  i s  readi ly  v i s i b l e .  These 
da t a  are obtained by cross-plot t ing the  complete set  of t r a n s f e r  da ta  which is  
computed f o r  f ixed incl inat ions as a function of departure date. The da ta  
necessary t o  prepare the  contour maps are included i n  apsendix B f o r  Earth 
departures and appendix C f o r  Mars departures.  

Earth Launch Window 

The launch s i t e  considered f o r  these missions w a s  t h e  Kennedy Space 
Center ( K S C )  . 
a plane change m u s t  be between t h e  s i t e ' s  l a t i t u d e  (X 28') and t h e  range 
s a f e t y  constraint  (about 50'). 
l imited t o  posigrade o r b i t s  of 30°, 40°, and 50' inc l ina t ion .  

Therefore, t he  o r b i t  incl inat ions t h a t  can be obtained without 

The Earth launch-window analysis  w a s  therefore  

1982 inbound swingby.- The results f o r  t he  1982 launch are shown i n  
f igures  l l ( a )  and (b)  for a c i r c u l a r  o r b i t  of 300 km a l t i t u d e  with an 
intermediate eccent r ic i ty  of 0.9 f o r  t he  three-impulse t r ans fe r s .  

Since t h e  var ia t ion  of t h e  Earth departure hyperbolic excess ve loc i ty  f o r  
t h i s  opportunity is from 4 t o  5 km/sec ( K  = 0.5 + 0 . 6 5 ) ,  f igu re  6 indicates  
t h a t  the two-impulse t r a n s f e r  w i l l  have lower AV 
impulse for plane-change angles (L) over 13'. 
impulse does indeed lower t h e  AV requirement at a given departure da te .  
However, f o r  reasonable ve loc i ty  pena l t ies  associated with t h e  plane change 
(i .e., 10-20 percent of t h e  minimum coplanar departure AV) , t h e  increase i n  
launch-window s i z e  (M 1 day) i s  not of su f f i c i en t  magnitude t o  make t h e  two- 
impulse t r a n s f e r  of p rac t i ca l  i n t e r e s t .  

requirements than t h e  one 
Figure 11 shows t h a t  t h e  two 

The use of three-impulse t ransfers  is  seen t o  increase t h e  avai lable  
launch window s ign i f i can t ly .  For a AV of 4.5 km/sec, t h e  three-impulse 
window is over 24 days f o r  t h e  southern in jec t ion  ( f i g .  l l ( a ) ) .  
AV only a 2-day window is available with a one-impulse t r a n s f e r .  
a 24-day window with the  one-impulse t r a n s f e r  would require a AV 
7 km/sec . Thus, t h e  launch-window f l e x i b i l i t y  provided by a three-impulse 
t r ans fe r  makes it worth consideration even with t h e  complexity of performing 
th ree  maneuvers. 

For t h e  same 
To achieve 
of about 
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The southern in jec t ion  o r b i t  ro ta tes  relative t o  the  departure vectors  
such t h a t  two coplanar departures occur during the departure period studied. 
These are indicated by the minimal regions of the f igure and are shown graphi- 
c a l l y  i n  appendix B. Departures between these points  require plane changes 
and thus &T penal t ies .  The three-impulse t r a n s f e r  s ign i f i can t ly  reduces 
the plane-change AV penalty, thus opening this  region t o  low AV departures.  
A comparison of figure U ( a )  f o r  the  southern in jec t ion  and f igu re  l l ( b )  f o r  
t h e  northern in jec t ion  reveals the e f f ec t  tha t  t h e  o rb i t  d i rec t ion  can have 
upon the  launch window. e- 

For the northern in jec t ion  ( f ig .  l l ( b ) ) ,  the o r b i t  ro ta t ion  r e l a t i v e  t o  
L the departure vector  va r i a t ion  results i n  only one coplanar departure i n  the 

departure period studied. 
t i m e .  A s  seen i n  f igu re  9 ,  t h i s  e a r l i e r  departure has a higher Earth depar- 
t u r e  AV requirement. The plane-change penalty for th i s  o r b i t  o r ien ta t ion  
is a l so  higher than f o r  the southern inject ion as seen i n  appendix B. 
Therefore, the use of a three-impulse t ransfer  f o r  the northern in jec t ion  
o r b i t  is not as effective as f o r  t he  southern in jec t ion  o r b i t  i n  1982. 

A second coplanar departure occurred a t  an earlier 

1986 outbound swingby.- The Earth departure data for the  1986 opportunity 
are shown i n  figure 12(a)  f o r  the southern in jec t ion  o rb i t ,  and i n  12(b) f o r  
the northern in jec t ion .  
one-, two-, and three-impulse t ransfers  f o r  the 1982 opportunity apply here 
as w e l l .  The effect of o r b i t  o r ien ta t ion  is d i f f e ren t ,  however. 
opportunity, t h e  ro ta t ion  of northern inject ion o r b i t  ( f i g  . 12(b) ) , r e l a t ive  
t o  the departure vectors,  allows two coplanar departures over t h e  time period 
studied. Again, using three-impulse t ransfer  opens the e n t i r e  departure 
region between these coplanar points t o  low OV requirements. 

The above conclusions as t o  the r e l a t i v e  value of 

For this  

1 Mars Launch Window 

The minimum inc l ina t ion  tha t  w i l l  a l l o w  coplanar arrival and departure 
is defined by the  magnitude of the l a rge r  of t h e  declinations at  a r r i v a l  and 
departure.  This inc l ina t ion  is 28.7' and 20.8' f o r  the 1982 and 1986 missions, 
respectively.  The maximum inc l ina t ion  is 180° minus the minimum inc l ina t ion  
( i - e . ,  a retrograde o r b i t ) .  
t o  150' f o r  both missions i n  10' in te rva ls .  

The inclinations were, therefore ,  var ied from 30' 

I A c i r c u l a r  parking o r b i t  of 1000 km a l t i t ude  was  assumed a t  Mars. The 

Circular parking 1 
1 

three-impulse t r ans fe r  technique again employed an intermediate o r b i t  w i t h  an 
eccen t r i c i ty  of 0.9 t o  perform the plane-change maneuver. 
o r b i t s  allow the coplanar a r r i v a l  maneuver t o  be performed tangent ia l ly  a t  
per iaps is  of the arrival hyperbola. The inser t ion MT is, therefore,  the  
same f o r  a l l  staytimes, incl inat ions,  and inser t ion d i rec t ions .  These AV 
are 2.7 and 4.3 km/sec for the 1982 and 1986 Mars arrivals, respectively.  

Only contour maps f o r  one- and three-impulse t ransfers  based upon the 
de ta i l ed  da t a  of appendix C are shown. 
excess ve loc i ty  t o  c i r c u l a r  ve loc i ty  a t  orbi t  a l t i t u d e  var ies  from 2 t o  4. 
From f igure  6,  plane-change angles of 60° or greater m u s t  occur before the 
two-impulse t r a n s f e r  reduces the  

The r a t i o  of Mars departure hyper3olic 

AV penalty below that of the one-impulse 
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t ransfer .  
t h e  two-impulse data  are not shown f o r  Mars departure.  
t he  1986 mission is about 1 .2  which requires a plane-change angle of over 45' 
f o r  t h e  two impulse t o  be b e t t e r  than the  one impulse. Plane changes of t h a t  
magnitude occurred f o r  incl inat ions of 60° t o  120'; however, t h e  reduction i n  
AV 
t o t a l  AV requirement and i s  not shown. 

Since such plane-change angles ra re ly  occurred f o r  t he  1982 mission, 
The ve loc i ty  r a t i o  f o r  

achieved through use of the  two-impulse t r ans fe r  w a s  s m a l l  compared t o  t h e  

1982 inbound swingby.- Figures l 3 ( a )  through (d) present the  contour maps' 
of t h e  AV requirements f o r  t he  1982 mission. The f igures  show the  da ta  f o r  
t he  southern inser t ion  with one and with th ree  impulses and the  northern 
inser t ion with one and with three  impulses. 

Figure l 3 ( a )  shows t h a t  f o r  a one-impulse escape f r o m  a southern 
inser t ion o r b i t ,  th ree  d i s t i n c t  regions exist f o r  a l o w  AV 
These are a nearly polar  o r b i t  f o r  staytimes up t o  50 days and both low i n c l i -  
nat ion posigrade and high inc l ina t ion  retrograde o r b i t s  a t  50 days staytime, 
plus or minus 10  days. In  order t o  provide continuous depar-bure capabi l i ty  
up t o  about 80 days f o r  a l l  avai lable  incl inat ions,  a 
required. The low A .  region near 90° inc l ina t ion  occurs s ince the  a r r i v a l  
and departure r igh t  ascensions a re  nearly the  same f o r  about 60 days 
staytime. 

capabi l i ty .  

AV of 9 km/sec i s  

Three-impulse t ransfers  from a southern inser t ion  o r b i t  ( f i g .  l 3 ( b ) )  
permit use o f  low incl inat ions f o r  short  staytimes ( 5  days) with a low 
( 5  km/sec) capabi l i ty .  When the  AV capabi l i ty  i s  increased t o  6 km/sec, a l l  
incl inat ions obtainable can be achieved f o r  staytimes up to 70 days. This is 
a s ignif icant  improvement over t he  one-impulse t r ans fe r .  A s i m i l a r  increase 
i n  staytimes avai lable  does not occur by increasing t h e  
km/sec since the  coplanar ve loc i ty  requirement r i s e s  rapidly after 60 days 
staytime ( f i g .  lo (  a )  ) . 

AV 

AV f rom 6 t o  7 

For t h i s  1982 mission, using a northern inser t ion  a t  a r r i v a l  increases 
t h e  launch window f o r  a l o w  t o  noderate N capabi l i ty .  This is  shown i n  
f igures  l 3 ( c )  and (d). The northern inser t ion  d i rec t ion  e f fec t ive ly  s h i f t s  
t he  AV curves forward 20 days as can be seen from a comparison of figures 
l3(a)  and ( c )  . This o r b i t a l  configuration allows a AV of 6 km/sec with a 
one-impulse t r ans fe r  t o  provide staytimes f o r  a l l  inc l ina t ions  of up t o  40 
days and f o r  some incl inat ions of up t o  70 days. The three-impulse t r ans fe r  
provides bas ica l ly  the  same launch-window capabi l i ty  f o r  e i t h e r  o rb i t  
inser t ion since t h e  plane-change penalty is minimal. 

1986 outbound swingby.- The data  f o r  t he  1986 Mars launch windows are 
presented i n  f igures  14(a) through (d) . Between 60 and 70 days staytime a 
discontinuity occurs i n  t h e  re turn  leg  cha rac t e r i s t i c s .  This r e su l t s  from 
t h e  t ra jec tory  se lec t ion  s ince  t h e  cen t r a l  angle of t h e  t r ans fe r  conic crosses 
t h e  180° r idge.  Solutions can, of course, be found i n  t h i s  region if a f i n e r  
gr id  of staytimes is used than w a s  done here,  or by constraining the  cen t r a l  
angle.  

Figure 14(a)  shows t h e  da ta  f o r  a southern inser t ion  with a s ingle-  
impulse departure. The da ta  does not display t h e  symmetry about 90' 
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inc l ina t ion  shown by t h e  1982 mission since the a r r i v a l  and departure r igh t  
ascensions a re  a t  l e a s t  43' apar t  f o r  the  first 60 days of staytime. After 
60 days, t h e  symmetry is  s t ronger .  For low t o t a l  AV capabi l i ty  (10 t o  20 
percent above minimum coplanar 
inclination-staytime map are avai lable .  A AV of 4 km/sec opens the low 
inc l ina t ion  region f o r  staytimes t o  about 80 days. 
o rb i t s  f o r  t h i s  mission would require a 

AV requirement) only s m a l l  strips of the 

However, t o  achieve polar  
AV of about 5 km/sec i f  only a 

y one-impulse t r a n s f e r  were t o  be used. 

Comparison of these data  t o  f igu re  14(b) f o r  t he  southern inser t ion  w i t h  
a three-impulse t r a n s f e r  reveals t he  e f fec t  of reducing t h e  plane-change 
penalty.  With a three-impulse t r ans fe r ,  a AV of about 3 . 1  km/sec w i l l  allow 
use of a l l  avai lable  inc l ina t ions  f o r  the staytimes shown. 

The e f f e c t  of using a northern inser t ion a t  a r r i v a l  f o r  the 1986 mission 
is shown i n  f igures  14(c) and (d). For t h i s  opportunity, the  sh i f t  i n  da ta ,  
mentioned f o r  1982, is only about 10 days and does not s ign i f i can t ly  change 
t h e  region avai lable  f o r  a given AV level .  A AV of 5 km/sec is required 
f o r  e i ther  inser t ion  t o  provide a reasonably la rge  inclination-staytime 
spectrum f o r  single-impulse t r ans fe r s .  
upon the  three-impulse da t a  is negl igible  w i t h  a AV of about 3 . 1  km/sec 
required t o  open the e n t i r e  region of inclinations and staytimes studied. 

The e f f ec t  of t he  d i f f e ren t  inser t ion  

Mission P ro f i l e  Reselection 

The preceding discussion has presented da ta  t h a t  a l l o w  the  def in i t ion  
of E a r t h  and Mars launch windows. 
nominal t r a j ec to ry  legs  as defined by the mission se lec t ion  cr i ter ia .  Using 
d i f f e ren t  c r i t e r i a  i n  t h e  se lec t ion  of t he  mission p r o f i l e  could possibly 
r e su l t  i n  more nearly coplanar departures and, therefore ,  l a rge r  launch win- 
dows without increasing t h e  ve loc i ty  penalty f o r  the one-impulse t r ans fe r s .  
This p o s s i b i l i t y  w a s  investigated f o r  both the d i r e c t  re turn  leg  and the  Venus 
swingby outbound leg of the  1986 mission. 
sec t ion .  

That analysis w a s  based upon t h e  assumed 

The r e su l t s  are described i n  t h i s  

Two cons t ra in ts  were placed upon the  reselected mission p ro f i l e .  F i r s t ,  
t h e  outbound l e g  and the  re turn  l eg  were reselected separately.  No in t e r -  
act ion e f f ec t s  of t he  reselect ion were considered even though, if a spec i f ic  
staytime were desired,  t h e  reselected outbound l eg  could influence the selec-  
t i o n  of t h e  return l e g .  Second, the  t o t a l  AV w a s  not allowed t o  be less 
than the minimum coplanar AV f o r  t he  nominal missions. This w a s  done s o  
t h a t  a f a i r  comparison could be made t o  t h e  nominal missions s ince many of t h e  
nominals would have a lower t o t a l  AV if a d i f fe ren t  c r i t e r i o n  had been 
employed i n  t h e  o r ig ina l  se lec t ion .  

Reselection of d i r e c t  inbound leg . -  An o r b i t  inc l ina t ion  of 600 was used 
f o r  the analysis  s ince it has r e l a t ive ly  high AV penal t ies  and is  i n  the 
region of i n t e r e s t  from a planetary operations standpoint.  
t u r e  ve loc i ty  increment versus staytime, resul t ing from the  reselect ion of 
the d i r e c t  re turn  l eg  of the  1986 mission, is shown i n  f igu re  15 as dashed 
l i n e s  f o r  both  northern and southern o rb i t a l  inser t ions .  

The t o t a l  depar- 

The ve loc i ty  



requirements f o r  t he  nominal re turn  legs a re  reproduced from appendix C as 
so l id  l i n e s  i n  the  f igure  t o  allow a d i r e c t  comparison of t h e  one-impulse 
t ransfers .  me charac te r i s t ics  of t he  reselected return leg  vary s i g n i f i -  
cantly with staytime as influenced by the  or ien ta t ion  of t he  o r b i t  a t  any 
given da te .  The Earth entry veloci ty  var ies  between 12 and 14 km/sec and 
return leg  durations vary between 135 and 280 days. This l a t te r  value is 
only 40 days grea te r  than the  m a x i m u m  duration f o r  t he  nominal missions. 

It can be seen t h a t  reselect ing t h e  d i r e c t  re turn leg  does indeed reduee 
t h e  plane-change penalty f o r  t he  staytimes considered. 
m a x i m u m  AV 
discussed, a launch window of 33 days w i l l  exist f o r  t h e  one-impulse t r a n s f e r .  
A capabi l i ty  of only 3.3 km/sec would allow a 60-day window, t h e  equal '  
of the three-impulse t r a n s f e r ,  without t he  need f o r  r e s t a r t i ng  t h e  departure 
engine or t h e  weight penalty f o r  use of several  engines. 

In  f a c t ,  if t h e  
is  3 .1  km/sec as f o r  t h e  three-impulse t r a n s f e r  previously 

AV 

From the  r e su l t s  of t h i s  analysis it is  concluded t h a t  su f f i c i en t  
f l e x i b i l i t y  of d i r e c t  l eg  duration ex i s t s  t o  allow re l a t ive ly  low single-  
impulse penal t ies  f o r  launch windows of 30 t o  60 days. 
of the o rb i t  inc l ina t ion  can be considered primarily from the  operation 
standpoint f o r  both one- and three-impulse t r ans fe r s  without extreme penal t ies  
f o r  reasonable launch windows . 

Thus, t he  se lec t ion  

Reselection of Venus swingby leg . -  A Venus swingby t r a j ec to ry ,  used f o r  
t h e  outbound leg  of t h e  1986 mission, has t h e  cha rac t e r i s t i c  t h a t  f o r  a f ixed  
E a r t h  departure date  only a s m a l l  range of Venus swingby dates  allows success- 
f u l  Mars in te rcepts .  Consequently, t he  r igh t  ascension and t h e  decl inat ion 
of the Earth departure vector  are e s sen t i a l ly  constant.  
concluded t h a t  no s ign i f i can t  changes i n  t h e  one-impulse ve loc i ty  requirements 
a re  t o  be found by reselect ing t h e  swingby l eg  of t he  mission. 
r i c  considerations a r e  similar, t h i s  conclusion should be applicable t o  t h e  
swingby l eg  of any o ther  mission. 

It is therefore  

Since geomet- 

Sens i t i v i ty  of Velocity Requirements 

The previous sect ions have discussed t h e  e f f e c t  of o r b i t  incl inat ion,  
staytime, and t r a j ec to ry  se lec t ion  upon the ve loc i ty  requirements f o r  planet  
departures. 
radius and planet J2 term on c i r c u l a r  o r b i t s .  The pr inc ipa l  effect i n  both 
cases i s  t o  change t h e  regression rate of t he  o r b i t .  
turn influences t h e  frequency w i t h  which t h e  departure vector  l ies i n  the  
orbi t  plane, and thus t h e  AV requirement a t  a given time. 

This sec t ion  considers t h e  e f f e c t  of uncer ta in t ies  i n  t h e  o r b i t a l  

The regression rate i n  

The AV data  f o r  o r b i t a l  a l t i t udes  of 300 and 1000 km are shown i n  
figure 16 f o r  t he  nominal 1986 return leg with an o r b i t  inc l ina t ion  of 60' fo r  
the  single-impulse t r a n s f e r .  The 1000 km a l t i t u d e  used f o r  t h e  main portion 
of the study has one coplanar departure opportunity during t h e  f i r s t  60 days 
of staytime. 
vides two coplanar departure opportunities during t h e  same in t e rva l ,  while 
retaining about t he  same m a x i m u m  AV requirement. This reduces t h e  duration 
of any given window if less than t h e  maximm veloc i ty  requirement is  available 

The 300 km a l t i t u d e  creates  a higher regression r a t e  and pro- 



A similar e f f ec t  w i l l  occur for even small e r ro r s  i n  the  o r b i t  radius. 
A 25-m e r r o r  i n  the  radius of the  o r b i t  (0.07 percent) results i n  an e r r o r  
of 2 percent i n  the  o r b i t a l  period f o r  a f ixed a l t i t ude .  With t h i s  e r ror ,  a 
staytime of only 50 days would r e s u l t  i n  the locat ion of t he  ascending node 
being i n  e r r o r  by about 3' ( i . e . ,  1 day),  thus a f fec t ing  t h e  predicted date of 
coplanar departure and the  magnitude of t h e  plane change f o r  noncoplanar depar- 
tures. This e f f ec t  is, of course, much more s ign i f i can t  f o r  t h e  one-impulse 
t r ans fe r ,  where a change i n  & of 5' represents as much as 0.3 km/sec N 

order of magnitude less. 
' penalty,  than f o r  t he  three-impulse t ransfer  where t h e  AV penalty is an 

$ The change i n  t h e  predicted longitude of t h e  ascending node due t o  an 
uncertainty in  J2 can be determined by taking a der ivat ive of t h e  equation 
f o r  ncI on page 3 .  A 5-percent e r ro r  i n  J2 f o r t h e  o r b i t  a l t i t u d e  studied 
would r e s u l t  i n  an e r r o r  i n  0 defined by 

6Q = 0.32t cos i (deg) 

For a 50 day staytime and an inc l ina t ion  of 60°, t h e  e r r o r  i n  the  predicted 
locat ion of t he  ascending node would be 8O. 

It should be pointed out t h a t  these are  long-term prediction errors. 
Operationally, continual updating of t h e  o rb i t a l  da ta  w i l l  allow reasonably 
accurate predict ion of t he  o r b i t  parameters a t  t h e  time of departure. 

CONCLUSIONS 

The da ta  presented i n  t h i s  report  show t h a t ,  i n  general ,  t h e  use of 
coplanar ve loc i ty  requirements does not accommodate reasonably launch-window 
penal t ies  f o r  e i t h e r  one- or two-impulse t ransfers .  
AV 
20 days a t  Earth or 60 days a t  Mars can resu l t  i n  penal t ies  t h a t  a r e  50 per- 
cent of t h e  nominal coplanar departure AV requirement. Two-impulse trans- 
fers ,  while reducing the  peak ve loc i ty  penalty, do not s ign i f icant ly  increase 
the  launch windows associated with one-impulse t r ans fe r s  f o r  reasonable AV 
penal t ies .  However, use of three-impulse t r ans fe r s  from c i r c u l a r  o rb i t s  per- 
m i t s  t h e  same launch windows, 20 days at Earth and 60 days a t  Mars, f o r  AV 
penal t ies  on t h e  o d e r  of 10 percent of the coplanar departure 
requirement. 

Providing a departure 
capabi l i ty  f o r  one-impulse t r ans fe r s  on any day during a launch window of 

AV 

The o r b i t  precession as determined by t h e  d i rec t ion  of in jec t ion  (Earth)  
or i n se r t ion  (Mars) can s igni f icant ly  affect  t h e  launch-window duration. One 
d i rec t ion  r e su l t s  i n  a precession which follows t h e  departure vector  and thus 
reduces t h e  plane-change penalty. 
than at  Mars. 

This e f fec t  w a s  more pronounced a t  Earth 

The analysis  has revealed t h a t  if the parking o r b i t  inc l ina t ion  and 
d i rec t ion  are f ixed,  t he  proper select ion of t h e  departure l eg ,  f o r  d i r e c t  
t r ans fe r s  between the  planets ,  can produce launch windows with acceptable AV 
penal t ies  f o r  one-impulse t ransfers .  Since t h e  o r b i t  is f ixed ,  i t s  motion as 



a function of staytime i s  known and t h e  departure t r a j ec to ry  which minimizes 
t h e  t o t a l  departure AV (i. e. , t he  AV t h a t  includes both plane change and 
veloci ty  increase) can be found. 
t o  Venus swingby legs s ince the  swingby requirement severely r e s t r i c t s  t he  
departure vector var ia t ions .  

This conclusion is  generally not applicable 

Small e r rors  (<5 percent)  i n  the  knowledge of t h e  o r b i t a l  radius and of 
J2 

While t h i s  error  does not s i g n i f i -  
t he  
ascending node f o r  staytimes of 50 days. 
cant ly  change t h e  magnitude of t h e  m a x i m u m  AV requirement, t h e  AV require- 
ment f o r  a pa r t i cu la r  staytime can change by as much as 0.3 km/sec f o r  a one- 
impulse t ransfer .  
parameters during the  stopover. 

term can cause e r rors  of 5O i n  the  predicted locat ion of t he  o r b i t a l  , 

These e r rors  can be reduced through updating of t h e  o r b i t a l J  

National Aeronautics and Space Administration 
Moffett F ie ld ,  Cal i f . ,  94035, Sept. 18, 1967 
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APPENDIX A 

THREE-llG?ULSE ANALYSIS 

Figure 1-7 indicates  t h e  geometry and notation used i n  t h e  analysis  of t h e  
r e s t r i c t ed  three-impulse escape maneuver. 
l a r  parking o r b i t  plane is specif ied by t h e  longitude of t he  ascending node 
(measured from t h e  planet ' s  vernal equinox), 0, and t h e  incl inat ion,  i. 
departure asymptote is specif ied by two angles; t h e  r igh t  ascension, p, and 
declination, 6.  The f i r s t  impulse t o  inser t  t h e  spacecraft  i n to  t h e  in te r -  
mediate e l l i p s e  is applied a t  an angle w measured i n  t h e  o r b i t a l  plane from 
t h e  ascending node. Since the  impulse is applied tangent ia l ly ,  t h i s  posi t ion 
becomes the  per iapsis  of t h e  intermediate e l l ipse  and is  designated by t h e  
un i t  vector  9,. The o r b i t  plane is  then rotated with t h e  second impulse a t  
apoapsis of t h e  intermediste e l l i p s e  (i.e.,  a t  -; ) so  as t o  be coplanar with 
t h e  departure asymptote, V,. 

A t  t h e  t i m e  of departure,  t he  circu- 

The 

'I' 

P 

The t h i r d  or escape impulse is applied tangent ia l ly  a t  an appropriate 
point on t h e  intermediate e l l i p s e  (see f i g .  18) such t h a t  t he  correct  escape 
asymptote d i rec t ion  and speed are achieved. Using a tangent ia l  impulse t o  
escape from t h e  intermediate e l l i p s e  great ly  s impl i f ies  t he  calculat ion of 
t he  escape maneuver and sac r i f i ce s  very l i t t l e  i n  AV accuracy over t h e  opt i -  
mal single-impulse escape where f l igh t -pa th  angle is changed. This is  i l lus- 
t r a t e d  i n  f igures  19 and 20 which show the veloci ty  increment required t o  
escape from Mars t o  a ve loc i ty  a t  i n f i n i t y  of 6 km/sec coplanar from orb i t s  
with eccen t r i c i t i e s  equal t o  0.6 and 0.9, respectively.  The ve loc i ty  incre- 
ments are shown as a funct ion of turning angle ,  P, and r e su l t s  are shown f o r  
both optimum single-impulse and tangent ia l  single-impulse escape maneuvers. 
It can be seen f o r  near-periapsis departures ( i . e . ,  P 
t h a t  t h e  tangent ia l  s ing le  impulse approximates t h e  optimum s ingle  impulse 
within 0.1 km/sec for 90' e i t h e r  s ide  of periapsis, thus jus t i fy ing  t h i s  

near 100' i n  t h i s  case) 
t o  

considerable s impl i f ica t ion .  

The departure point on t h e  e l l i p s e  i n  f igure  18 i s  designated by t h e  
true anomaly, e,, and a l so  by t h e  true anomaly on the  escape hyperbola, Oh 
The key independent parameter is the  angle be:ween t h e  per iapsis  un i t  vector,  
P , and t h e  departure asymptote uni t  vector V,, and is designated as P. It 
i8 convenient t o  invert  t h e  escape problem and t h e  ro les  of dependent and 
independent parameters by specifying 8, and then determining t h e  resu l t ing  
angle P. 

Applying t h e  conditions of tangency between t h e  escape hyperbola and the  
is applied and then solving f o r  intermediate e l l i p s e  a t  the  point where 

the  unknown eccen t r i c i ty  of t h e  hyperbola yields:  



where 
r p ( l  + eel r =  1 + ee COS 8, 

and 
ee s i n  8, 

1 + e, s i n  8, t an  7 = 

The t rue  anomaly on the escape hyperbola i s  then given by 

- eh2 tan 7 
eh r;/8 s i n  eh = 

I n  f igu re  18, the asymptote half-angle,  E ,  i s  determined by 
1 

eh 
E = cos-I - 

and t h e  angle  P is f i n a l l y  determined by 

P = J[ - E + 8, - 8h 

The t h i r d  veloci ty  Increment, AV3, i s  given d i r e c t l y  by 

The u n i t  vector normal to  the o r ig ina l  o r b i t  plane, fi, i n  f igu re  17, i s  
given by 

A h 

ii = s i n  R s i n  i i - cos R s i n  i j + cos i 2 

The u n i t  vector, ?,, i s  then simply determined by 

i?n x E., = s i n  w n A 

and 

A E., r P = cos w 
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where 9, i s  the  u n i t  vector a t  the ascending node and i s  given by  

= cos i + s i n  Q 3 en 

The u n i t  vector i n  the d i r ec t ion  of the departure asymptote i s  given by 

?, = cos 6 cos p 2 + cos 6 s i n  p 3 + s i n  6 C 

and the angle P i s  then determined from 

c A 

cos I? = ?p v, 
The u n i t  vector n o m 1  t o  the departure o r b i t  plane (see f ig .  18) is then 
given by 

n ?p x v, ne = s i n  P 

and thus the  plane-change a3;lgle required a t  apoapsis t o  r o t a t e  the o r i g i n a l  
o r b i t  plane coplanar with V, i s  given simply by 

cos n = fie i?l 

The required ve loc i ty  increment i s  

The f i r s t  ve loc i ty  increment is, of course, determined by 

and t o t a l  escape veloci ty  requirement i s  thus given by 

nv = nv, + nv, + nv, 



APPEXDIX B 

The da ta  presented within t h i s  appendix show t h e  t o t a l  AV required f o r  
Earth departure versus departure date  f o r  each inc l ina t ion  considered. 
ures 21(a-c) present t he  da ta  f o r  t h e  1982 inbound swingby a t  incl inat ions 
of 30°J 40°J and gooJ respectively.  
f o r  the 1986 outbound swingby. 
th ree  impulses are shown i n  each f igu re  f o r  both southern and northern i n j e c - ’  
t ions  into t h e  outbound interplanetary leg .  
departure AV f o r  each departure da ta .  

Fig- 
v 

Figures 22(a-c) present similar data  
The ve loc i ty  requirements f o r  one ,, two, and 

Also shown is the  coplanar 

For t h e  departure analysis ,  t h e  o r b i t a l  plane w a s  assumed coplanar with 
t h e  nominal departure vector .  
244 4990 and 244 6160 for t h e  1982 and 1986 opportunities 
a l l  inclinations have no plane-change requirement f o r  t he  nominal departure.  
Because of t h e  o rb i t  regression, each combination of inc l ina t ion  and o r b i t  
or ientat ion ( in jec t ion  d i rec t ion)  w i l l  have other  coplanar da tes ,  with a 
f i n i t e  plane-change requirement f o r  a l l  noncoplanar da tes .  

This w a s  defined f o r  t h e  departure dates  of 
respectively.  Thus, 

Cross plo ts  of these da ta  a t  f ixed values of AV resul ted i n  f igures  11 
and 12. The reduction of t h e  maximum AV requirement achieved when a two- 
impulse t r ans fe r  was used instead of a one-impulse t r a n s f e r  is evident f o r  
each incl inat ion.  It can a l so  be seen t h a t  t h e  s m a l l  d i f ference between t h e  
one- and two-impulse t ransfers  a t  low AV ( i . e . ,  10 t o  20 percent above mini- 
mum coplanar) is due t o  t h e  s teep slope of t h e  curves near t he  coplanar aates. 
The success of t h e  three-impulse t r ans fe r  i n  reducing the  plane-change penalty 
is evident i n  a l l  f i gu res .  
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APPENDIX c 

MARS D E P A R W  F G 3 Q U W  

me data  i n  t h i s  appendix present the t o t a l  AV requirement as a 
function of staytime for departures from a c i r cu la r  o r b i t  a t  Mars. 
t i ons  from 30° t o  l>Oo i n  loo increments are shown for the 1982 mission i n  
f igures  23( a -m)  and for t he  1986 mission i n  f igures  24(a-m), respectively.  
Data are included for one-impulse and three-impulse t r ans fe r s  with both north 
and south o r b i t a l  inser t ions .  The coplanar departure AV of figure 10 i s  
repeated i n  f igu res  24 but not i n  f igures  23 t o  avoid confusion with t h e  three-  
impulse da ta .  A s  mentioned i n  t h e  text ,  the discont inui ty  around 65 days s tay-  
t i m e  f o r  t h e  1986 mission results from t h e  cent ra l  angle of t h e  interplanetary 
t r a n s f e r  l eg  crossing t h e  180° ridge.  

Inclina- 

The o r b i t  is i n i t i a l l y  positioned by a coplanar a r r i v a l  f o r  t h e  nominal 

The nominal a r r i v a l  dates a t  Mars are 244 5210 and 244 6500 f o r  
mission. 
increments. 
t he  1982 and 1986 missions, respectively.  

Staytime w a s  then var ied from zero t o  100 days staytime i n  10-day 

Cross p l o t s  of these da ta  resul ted i n  f igures  13 and 14. 
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APPENDIX D 

NOTATION 

a 

e 

H 

L 

i 

J2 

K 

n 

P 

R 

r 

t 

MT 

Y 

A 

6 

E 

e 

P 

semimajor axis, km 

eccent r ic i ty  

a l t i tude ,  km 

minimum angle between departure vec tor  and o r b i t  plane, deg 

incl inat ion,  deg 

second harmonic of planetary oblateness 

r a t i o  of excess ve loc i ty  t o  c i r c u l a r  ve loc i ty  

normal vector 

turning angle, deg 

planet radius,  km 

o r b i t  radius, km 

time, sec 

hyperbolic excess veloci ty ,  km/sec 

ve loc i ty  r e l a t i v e  t o  planet,  km/sec 

propulsive ve loc i ty  increment, b / s e c  

components of the  planet-centered coordinate system 

f l igh t -pa th  angle, deg 

plane-change angle a t  apoapsis for three-impulse t ransfer ,  deg 

declination, deg 

asymptote half-angle, deg 

true anomaly, deg 

gravi ta t iona l  parameter, km3/sec2 

r igh t  ascension, deg 

. 

22 



7 unperturbed o r b i t a l  p e r i d ,  sec 

Y or ien ta t ion  of second impulse i n  two-impulse transfer 

4 cen t r a l  angle of interplanetary l e g ,  deg 

51 longitude of ascending node, deg 

W o r b i t a l  regression ra te ,  deg/sec; also, f o r  appendix A, as defined 
i n  figure 17, deg 

- (9 un i t  vec tor  

Subscripts 

a 

b 

C 

e 

h 

i 

n 

P 

Q,@,d 

1,293 

reference data  

departure data  

circular 

e l l  i p s  e 

hyperbola 

intermediate e l l i p s e  f o r  three-impulse t r a n s f e r  

node 

periaps is 

Venus, Earth, and Mars 

f i rs t ,  second, and t h i r d  impulse 
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Figure 2.- Orbit geometry a t  planet departure. 
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Figure 4.- Effect of f i n i t e  th rus t ing  time on ign i t ion  t r u e  anomaly. 
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Figure 17. - Orbit geometry. 

Figure 18. - Escape geometry. 
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